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Abstract

Purpose of the Study

The purpose of this study is to explore the use of quantum-inspired simulation techniques to assist in
investment decision-making for the top four U.S. banks. By leveraging real historical closing prices and
simulating all possible portfolio combinations using a 4-qubit quantum circuit, this research provides a
systematic, data-driven approach for evaluating risk-adjusted returns. The study demonstrates how
quantum simulation can offer insights and confidence in selecting the most promising bank portfolios. Put
simply, following the simulation’s recommendations could provide investors with greater confidence in
achieving more reliable profits while making better-informed financial decisions.

Methodology

Data Collection

Historical stock data for the top four U.S. banks—JPMorgan Chase (JPM), Bank of America (BAC),
Citigroup (C), and Wells Fargo (WFC)—was collected from Yahoo Finance using adjusted closing prices
from January 1, 2023, to January 1, 2025. The data was processed to calculate daily returns and the
covariance matrix, providing a foundation for evaluating portfolio risk and expected return.

Quantum Simulation

A 4-qubit quantum circuit was constructed using AWS Braket's LocalSimulator, where each qubit
represents one of the banks. Hadamard gates were applied to create superposition, allowing the
simulation to explore all possible portfolio combinations simultaneously. CNOT gates introduced
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entanglement to capture correlations between assets. Each circuit was run for 1,000 shots to obtain a
statistical distribution of portfolio bitstrings.

Portfolio Evaluation
For each portfolio configuration represented by a qubit bitstring, expected return and risk (variance) were
calculated. A cost function was defined as:

Cost = —Expected Return + A x Risk

where A is a tunable risk-aversion parameter. Portfolios were ranked based on this cost function, allowing
identification of optimal combinations for different risk preferences.

Key Findings
Key Insights from Lambda (A) Sensitivity Analysis

1. A = 0.0 (No Risk Aversion — Focus on Maximum Return)

Best Portfolio: All four banks — JPM, BAC, C, WFC

Interpretation: With no penalty for risk, the simulation favors including all assets to maximize expected
return. Ideal for highly aggressive investors willing to accept full market variability.

2. A = 0.5 (Low Risk Aversion — Slight Emphasis on Risk)

Best Portfolio: All four banks remain optimal

Interpretation: Introducing a small risk penalty slightly reduces expected return but encourages broad
diversification. Suitable for investors seeking growth with moderate caution.

3. A = 1.0 (Moderate Risk Aversion — Balanced Return/Risk Trade-off)

Best Portfolio: JPM, C, WFC

Interpretation: At moderate risk aversion, portfolios begin to drop one bank (BAC) to reduce overall risk
while maintaining strong expected returns. Suited for balanced investors.

4. A =1.5 (High Risk Aversion — Risk Reduction Prioritized)

Best Portfolio: JPM, WFC

Interpretation: Higher risk aversion favors smaller portfolios with fewer assets. Focus is on minimizing
risk over maximizing returns, highlighting strongest individual performers.

5. A = 2.0 (Very High Risk Aversion — Minimal Risk Focus)

Best Portfolio: JPM only

Interpretation: At very high risk aversion, only the single least risky bank is selected. Expected returns
are lower, but portfolio volatility is minimized. Suitable for highly conservative investors prioritizing capital
preservation.




Business Takeaway

) Lower A: Aggressive strategy, favoring higher returns with diversified assets.
) Medium A: Balanced strategy, maintaining strong returns while reducing risk slightly.
° Higher A: Conservative strategy, focusing on fewer, lower-risk assets to protect capital.

Significance / Implications for Portfolio Management

° Dynamic Risk-Return Trade-off: Portfolio composition should adapt to investor risk appetite. Low
A values favor diversified, high-return portfolios; high A values favor smaller, lower-risk portfolios.

° Prioritization of Asset Selection: As A increases, the model highlights the most stable assets,
helping managers identify “core holdings.”

° Strategic Decision-Making Tool: Quantum simulation explores all portfolio combinations quickly,
providing confidence in portfolio selection.

° Transparency and Confidence: Quantifying expected return and portfolio risk gives clear insights
for defensible investment decisions.

° Innovation and Competitive Advantage: Leveraging quantum simulation signals advanced
analytical capability, differentiating firms in a data-driven investment landscape.

Abstract Summary

The study confirms that quantum-assisted simulations can be a practical, scientifically grounded tool for
optimizing portfolios according to risk preference, providing clarity and confidence for investment
decisions.




Introduction

Portfolio optimization is a core activity in investment management, guiding decisions to balance risk and
return. Quantum computing offers a novel approach, enabling simultaneous exploration of all portfolio
combinations and more nuanced correlation capture. This report explores 4-bank portfolios using AWS
Braket LocalSimulator to find risk-adjusted optimal combinations.

Comparison with Classical Portfolio Modeling

) Exploration of All Portfolios Simultaneously: Quantum-inspired simulation evaluates all
portfolios at once; classical approaches must evaluate sequentially or rely on heuristics.

° Capturing Correlations via Entanglement: Entanglement encodes asset correlations directly;
classical methods require covariance matrices.

° Probabilistic Output vs Deterministic Output: Quantum simulation outputs probability
distributions; classical methods provide a single solution or Monte Carlo approximation.

) Risk-Return Trade-Off via Lambda: Adjusting A in a quantum circuit produces simultaneous
distributions for all portfolios; classical approaches require recomputation for each A.

° Scalability: Quantum circuits scale exponentially with qubit count; classical combinatorial
optimization becomes infeasible as assets increase.

Business Interpretation: Even with four banks, quantum-inspired simulation quickly explores all
risk-return scenarios, revealing a spectrum of viable portfolios. For larger asset pools, classical brute-force
methods would be too slow, while quantum simulation can handle them efficiently.

Methodology

° Data: JPM, BAC, C, WFC; period 01/01/2023 — 01/01/2025; source Yahoo Finance; adjusted close
prices.

° Quantum Simulation: AWS Braket LocalSimulator; 4 qubits; Hadamard gates for superposition;
CNOT gates for entanglement; 1,000 shots.

° Portfolio Evaluation: Expected return = mean of historical returns; risk = portfolio variance; cost
function = —Expected Return + A x Risk; A adjustable from O (ignore risk) to 2 (risk-weighted heavily).



Results

Portfolio Bitstring Frequencies

The simulation generated all 16 possible portfolio combinations for the four banks. The frequency
distribution over 1,000 shots for each bitstring shows which portfolios were more likely to be optimal given
the cost function and A value. This provides a probabilistic ranking rather than a single deterministic result.

The following tables show the frequency for A = 0.0, 0.5, 1.0, 1.5, and 2.0. That is to say, the following
tables show the optimal investment strateqgy across all Top 4 U.S. banks based on an investor’s risk
appetite from A = 0.0 (large risk appetite) to 2.0 (low risk appetite).

lambda_risk @ 0.00

Top Portfolios (lambda_risk=0.0):

1111 -> ['JPM', 'BAC', 'C', 'WFC'], Cost: -0.004584
1011 -> ['JPM', 'C', 'WFC'], Cost: -0.003810

1101 -> ['JPM', 'BAC', 'WFC'], Cost: -0.003430

1110 -> ['JPM', 'BAC', 'C'], Cost: -0.003277

0111 -> ['BAC', 'C', 'WFC'], Cost: -0.003237

Best Portfolio Overall: ['JPM', 'BAC', 'C', 'WFC'] (Cost: -0.004584)
Quantum Portfolio Simulation - 4 Banks (A=0.0)
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Figure 1: Portfolio frequency distribution for A = 0.0 (No Risk Aversion), showing all four
banks included to maximize expected return.



lambda_risk o 0.50

Top Portfolios (lambda_risk=0.5):

1111 -> ['JPM', 'BAC', 'C', 'WFC'l, Cost: —0.002941
1011 —> ['IPM', 'C', 'WFC'], Cost: -0.002872

1101 —> ['JIPM', 'BAC', 'WFC'l, Cost: -0.002487
1110 —> ['JPM', 'BAC', 'C'], Cost: -0.002405

1001 —> ['IPM', 'WFC'], Cost: -0.002218

Best Portfolio Overall: ['JPM', 'BAC', 'C', 'WFC'] (Cost: -0.002941)
Quantum Portfolio Simulation - 4 Banks (A=0.5)
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Figure 2: Portfolio frequency distribution for A = 0.5 (Low Risk Aversion), illustrating slight
risk weighting while still favoring all banks.

lambda_risk . 1.00

Top Portfolios (lambda_risk=1.0):

1011 -> ['JPM', 'C', 'WFC'l, Cost: -0.001935
1001 -> ['JPM', 'WFC'], Cost: -0.001781

1010 -> ['JPM', 'C'], Cost: -0.001721

1101 -> ['JPM', 'BAC', 'WFC'], Cost: -0.001545
1110 —> ['JPM', 'BAC', 'C'], Cost: —0.001532

Best Portfolio Overall: ['JPM', 'C', 'WFC'] (Cost: -0.001935)
Quantum Portfolio Simulation - 4 Banks (A=1.0)
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Figure 3: Portfolio frequency distribution for A = 1.0 (Moderate Risk Aversion), highlighting
the exclusion of BAC to reduce portfolio risk while maintaining strong returns.



lambda_risk . 1.50

Top Portfolios (lambda_risk=1.5):

1001 -> ['IPM', 'WFC'], Cost: -0.001344
1010 -> ['JPM", 'C'], Cost: -0.001330

1000 —> ['IPM'], Cost: -0.001055

1011 -> ['JPM', 'C', 'WFC'], Cost: -0.000998
1100 -> ['JPM', 'BAC'], Cost: -0.000987

Best Portfolio Overall: ['JPM', 'WFC'] (Cost: -0.001344)
Quantum Portfolio Simulation - 4 Banks (A=1.5)
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Figure 4: Portfolio frequency distribution for A = 1.5 (High Risk Aversion), showing selection
concentrated in JPM and WFC to prioritize risk reduction.

lambda_risk . 2.00

Top Portfolios (lambda_risk=2.0):

1000 —> ['JPM'], Cost: —0.000958

1010 —> ['JPM', 'C'], Cost: -0.000940
1001 -> ['JPM', 'WFC'], Cost: -0.000907
0001 -> ['WFC'], Cost: -0.000675

0010 —> ['C'], Cost: -0.000623

Best Portfolio Overall: ['JPM'] (Cost: -0.000958)
Quantum Portfolio Simulation - 4 Banks (A=2.0)
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Figure 5: Portfolio frequency distribution for A = 2.0 (Very High Risk Aversion), with only
JPM selected to minimize volatility and preserve capital.



Recommendations

Diversification Patterns and Risk-Return Trade-offs

1. Low A (0.0 — 0.5): Highly Aggressive / Growth-Oriented Portfolios
Quantum Assessment Results: Include all four banks (JPM, BAC, C, and WFC).

When risk is not penalized, or only slightly considered, the optimal portfolios include all
four banks (JPM, BAC, C, and WFC). This approach maximizes expected returns by
capturing the upside potential across the entire sector. However, it comes with the highest
exposure to market fluctuations. Such a strategy would appeal to highly aggressive
investors who prioritize growth and are comfortable absorbing significant volatility in pursuit
of higher profits.

2. Moderate A (1.0): Balanced Risk-Return Portfolios
Quantum Assessment Results: Exclude Bank of America (BAC).

At a mid-level risk aversion, the model begins to filter out higher-risk assets. In this
case, Bank of America (BAC) is excluded, leaving a portfolio composed of JPM,
Citigroup (C), and Wells Fargo (WFC). This adjustment reduces overall portfolio
variance while maintaining strong return potential. The outcome represents a
balanced strategy, suitable for investors seeking to participate in sector growth but
with a controlled level of downside risk.

3. High A (1.5 - 2.0): Defensive / Capital-Preservation Portfolios

Quantum Assessment Results: Exclude Citigroup (C) and Bank of America
(BAC). Additionally exclude Wells Fargo (WFC) at A = 2.0, leaving only JPMorgan
Chase & Co. (JPM).

As risk aversion increases further, the portfolios become more concentrated in the
most stable performers. At A = 1.5, the portfolio narrows to JPM and WFC, and at A
= 2.0 it reduces further to JPM alone. These configurations prioritize risk reduction
and capital preservation over return maximization. Expected profits are lower, but
volatility is minimized, making these portfolios attractive to conservative
investors—such as institutions, pension funds, or risk-averse individuals—who
prioritize protecting capital even at the expense of growth.



Why Certain Banks Were Favored

JPM consistently appears across all A levels due to strong historical returns and lower volatility. WFC and C
appear selectively; BAC is excluded at higher A levels due to higher variance.

Limitations

While the findings of this study are promising, several important limitations must be acknowledged:

1. Restricted Asset Universe
This experiment considered only four assets—the top U.S. banks by market
capitalization (JPMorgan Chase, Bank of America, Citigroup, and Wells Fargo).
Although this makes the problem tractable and illustrative, it does not capture the
broader diversification opportunities available in a real investment portfolio that
might include additional banks, sectors, or global equities. Results may therefore
understate the complexity of real-world optimization.

2. Simulation Environment
The analysis was conducted using AWS Braket's LocalSimulator, which provides
an idealized environment free from the noise, decoherence, and gate errors that
affect actual quantum hardware. While this enables clean testing of portfolio
optimization logic, it does not reflect the current practical limitations of running
algorithms on real quantum devices. Future work should validate results on actual
quantum hardware to assess robustness.

3. Dependence on Historical Data
Portfolio expected returns and risks were calculated using historical adjusted closing
prices between January 2023 and January 2025. This assumes that past
performance and correlations are reliable indicators of the future, which may not
hold in practice—particularly during periods of structural change in banking,
regulation, or macroeconomic conditions. Thus, the outcomes should be interpreted
as illustrative rather than predictive.

4. Simplified Cost Function
The cost function used, Cost = —Expected Return + A x Risk, while effective for
demonstrating the principle of risk-return trade-off, is a simplified abstraction of
real-world portfolio optimization. In practice, managers may need to incorporate
transaction costs, liquidity constraints, regulatory capital requirements, and other
non-linear factors not captured here.




Conclusion

This study demonstrates that quantum-assisted simulations can provide a practical and innovative approach to
portfolio optimization, particularly in modeling explicit investor risk preferences. By leveraging the probabilistic
nature of quantum circuits, it becomes possible to evaluate all potential portfolio combinations simultaneously,
offering investors and managers a broader and more transparent view of trade-offs between risk and return.

The results confirm a clear pattern: as risk aversion (A) increases, the composition of the optimal portfolio shifts
from fully diversified, high-return allocations to more concentrated, lower-risk selections. For aggressive
investors, low A values support broad exposure across all four banks, maximizing expected return. For more
conservative investors, higher A values progressively narrow the portfolio to focus on the most stable banks,
ultimately prioritizing capital preservation over growth.

From a business standpoint, this provides actionable guidance. Portfolio managers can use the quantum
framework not only to identify the most appropriate holdings for each client’'s risk profile but also to
communicate these decisions transparently with data-backed evidence. By quantifying expected returns, risks,
and likelihoods of outcomes, the simulation offers probabilistic confidence—a defensible foundation for
investment decisions that enhances both client trust and internal decision-making.

Finally, the broader significance of this work lies in its role as a bridge between theoretical quantum finance
and real-world portfolio management. While the study is limited to a small asset universe and simulated
environment, it illustrates how quantum-inspired techniques can enhance existing methods and open the door
to more sophisticated applications. As quantum hardware matures and asset universes expand, such
approaches could evolve from experimental demonstrations into competitive advantages for
institutions seeking to maximize returns while managing risk in increasingly complex markets.

Next Steps

Building on the findings of this study, several clear pathways exist for advancing the research and moving
closer to real-world application.

First, the asset universe should be expanded beyond the four largest U.S. banks. By including additional
banks, sectors, or exchange-traded funds (ETFs), the simulation could provide a richer and more
representative view of diversification benefits and cross-sector dynamics. This would also allow the quantum
optimization approach to demonstrate its scalability and value in more complex investment environments.

Second, future work should incorporate real quantum hardware rather than relying solely on local simulators.
Running these portfolio optimization circuits on actual devices would expose the models to hardware noise and
practical limitations, offering insight into how well quantum methods can perform under real-world constraints.
This step is critical for moving from proof-of-concept simulations toward production-grade quantum financial
applications.



Third, exploring alternative quantum optimization algorithms such as the Quantum Approximate
Optimization Algorithm (QAOA) or the Variational Quantum Eigensolver (VQE) could yield new efficiencies or
improve accuracy in capturing the risk-return trade-off. These methods may also provide different perspectives
on how best to encode financial problems into quantum circuits.

Fourth, integrating live market data streams would enable the framework to evolve into a dynamic
decision-support system. Instead of relying on historical price data, real-time feeds could allow portfolio
managers to adjust strategies on the fly, creating a genuinely adaptive, quantum-assisted investment tool.

Finally, the most impactful next step is to partner with a financial institution. Collaborating with a bank or asset
manager would allow this research to be validated against real investment practices, tested at scale, and
refined in line with industry needs. Such a partnership would not only accelerate the practical deployment of
quantum portfolio optimization but also position the participating institution at the forefront of financial
innovation. Together, these next steps form a roadmap for advancing from an experimental case study toward
a fully deployable quantum-enabled portfolio management solution.

Closing Statement

This study demonstrates the practical potential of quantum-assisted portfolio optimization for modeling investor
risk preferences and improving decision transparency. By extending this research with larger asset universes,
live market data, and real quantum hardware, financial institutions can unlock a new class of tools for portfolio
construction. Real progress will depend on collaboration—bringing together banks, researchers, and
technology providers to translate these early results into profitable, scalable strategies. The author
acknowledges the contributions of open-source developers, AWS Braket, and the Python research community,
whose tools and resources made this work possible.
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